Accéder au contenu
Merck

Evidence that nonbilayer phase propensity of the membrane is important for the side chain cleavage activity of cytochrome P450SCC.

Biochemistry (1997-12-31)
D Schwarz, P Kisselev, W Pfeil, S Pisch, U Bornscheuer, R D Schmid
RÉSUMÉ

To analyze whether specific protein-lipid interactions or physical features of the membrane contribute to cytochrome P450SCC (CYP11A1) activation by lipids, dimyristoylphosphatidylcholine/cardiolipin and dimyristoylphosphatidylcholine/branched phosphatidylcholine vesicles of defined acyl chain structure were studied for their ability to stimulate the side chain cleavage activity of the enzyme. Activation was found to increase with the mole percent of nonbilayer lipids in the system and the chain lengths of both the branched and main fatty acyl chains of the activator lipid. Unsaturation provided by dioleoylphosphatidylcholine as host lipid leads to a further increase in the potency of the branched phosphatidylcholines to activate the enzyme. The observed activation can be qualitatively interpreted in terms of the effect of these lipids on the hydrophobic volume of the membrane. Using differential scanning calorimetry, we showed that the branched phosphatidylcholines perturb the bilayer membrane structure of dimyristoylphosphatidylcholine and lower the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine, i.e., promote hexagonal phase formation. We also examined the effect of eicosane on both the cytochrome P450SCC activity and the lipid polymorphism and found that eicosane increases both the activity and the hexagonal phase propensity of the vesicle membrane. Because of these correlations, we conclude that the nonbilayer phase propensity of the membrane rather than specific binding of activator lipids to the enzyme explains best the observed activation of enzymatic activity by the lipids.