Accéder au contenu
Merck

Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect.

Drug development and industrial pharmacy (2012-04-17)
Alexandre Monteiro, Afolawemi Afolabi, Ecevit Bilgili
RÉSUMÉ

Nanoparticles of BCS Class II drugs are produced in wet stirred media mills operating in batch or recirculation mode with the goal of resolving the poor water-solubility issue. Scant information is available regarding the continuous production of drug nanoparticles via wet media milling. Griseofulvin and Naproxen were milled in both recirculation mode and multi-pass continuous mode to study the breakage dynamics and to determine the effects of suspension flow rate. The evolution of the median particle size was measured and described by an empirical breakage model. We found that these two operation modes could produce drug nanosuspensions with similar particle size distributions (PSDs). A reduced suspension flow rate slowed the breakage rate and led to a wider PSD and more differentiation between the two operation modes. The latter part of this study focused on the roles of stabilizers (hydroxypropyl cellulose and sodium lauryl sulfate) and elucidation of the so-called Rehbinder effect (reduction in particle strength due to adsorbed stabilizers such as polymers and surfactants). Milling the drugs in the absence of the stabilizers produced primary nanoparticles and their aggregates, while milling with the stabilizers produced smaller primary nanoparticles with minimal aggregation. Using laser diffraction, BET nitrogen adsorption, scanning electron microscopy imaging, and a microhydrodynamic analysis of milling, this study, for the first time, provides sufficient evidence for the existence of the Rehbinder effect during the milling of drugs. Not only do the polymers and surfactants allow proper stabilization of the nanoparticles in the suspensions, but they also do facilitate drug particle breakage.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Hydroxypropyl cellulose, average Mw ~80,000, average Mn ~10,000, powder, 20 mesh particle size (99% through)
Sigma-Aldrich
Hydroxypropyl cellulose, average Mw ~100,000, powder, 20 mesh particle size (99% through)
Sigma-Aldrich
Hydroxypropyl cellulose, average Mw ~370,000, powder, 20 mesh particle size (99% through)
Sigma-Aldrich
Hydroxypropyl cellulose, average Mw ~1,000,000, powder, 20 mesh particle size (99% through)