Accéder au contenu
Merck
  • Mechanisms underlying molecularly imprinted polymer molecular memory and the role of crosslinker: resolving debate on the nature of template recognition in phenylalanine anilide imprinted polymers.

Mechanisms underlying molecularly imprinted polymer molecular memory and the role of crosslinker: resolving debate on the nature of template recognition in phenylalanine anilide imprinted polymers.

Journal of molecular recognition : JMR (2012-02-01)
Gustaf D Olsson, Björn C G Karlsson, Siamak Shoravi, Jesper G Wiklander, Ian A Nicholls
RÉSUMÉ

A series of molecular dynamics simulations of prepolymerization mixtures for phenylalanine anilide imprinted co-(ethylene glycol dimethacrylate-methacrylic acid) molecularly imprinted polymers have been employed to investigate the mechanistic basis for template selective recognition in these systems. This has provided new insights on the mechanisms underlying template recognition, in particular the significant role played by the crosslinking agent. Importantly, the study supports the occurrence of template self-association events that allows us to resolve debate between the two previously proposed models used to explain this system's underlying recognition mechanisms. Moreover, the complexity of the molecular level events underlying template complexation is highlighted by this study, a factor that should be considered in rational molecularly imprinted polymer design, especially with respect to recognition site heterogeneity.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Methacrylic acid, contains 250 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
Sodium methacrylate, 99%