Accéder au contenu
Merck

Independence between pre-mRNA splicing and DNA methylation in an isogenic minigene resource.

Nucleic acids research (2017-12-16)
Kyster K Nanan, Cody Ocheltree, David Sturgill, Mariana D Mandler, Maria Prigge, Garima Varma, Shalini Oberdoerffer
RÉSUMÉ

Actively transcribed genes adopt a unique chromatin environment with characteristic patterns of enrichment. Within gene bodies, H3K36me3 and cytosine DNA methylation are elevated at exons of spliced genes and have been implicated in the regulation of pre-mRNA splicing. H3K36me3 is further responsive to splicing, wherein splicing inhibition led to a redistribution and general reduction over gene bodies. In contrast, little is known of the mechanisms supporting elevated DNA methylation at actively spliced genic locations. Recent evidence associating the de novo DNA methyltransferase Dnmt3b with H3K36me3-rich chromatin raises the possibility that genic DNA methylation is influenced by splicing-associated H3K36me3. Here, we report the generation of an isogenic resource to test the direct impact of splicing on chromatin. A panel of minigenes of varying splicing potential were integrated into a single FRT site for inducible expression. Profiling of H3K36me3 confirmed the established relationship to splicing, wherein levels were directly correlated with splicing efficiency. In contrast, DNA methylation was equivalently detected across the minigene panel, irrespective of splicing and H3K36me3 status. In addition to revealing a degree of independence between genic H3K36me3 and DNA methylation, these findings highlight the generated minigene panel as a flexible platform for the query of splicing-dependent chromatin modifications.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Agarose avec protéine G / ADN de sperme de saumon, 2,5 ml, for use in chromatin immunoprecipitations (ChIP assays)