Accéder au contenu
Merck

Glycogen synthase kinase 3 drives thymocyte egress by suppressing β-catenin activation of Akt.

Science advances (2021-10-09)
Chenfeng Liu, Lei Ma, Yuxuan Wang, Jiayi Zhao, Pengda Chen, Xian Chen, Yingxin Wang, Yanyan Hu, Yun Liu, Xian Jia, Zhanghua Yang, Xingzhi Yin, Jianfeng Wu, Suqin Wu, Haiping Zheng, Xiaohong Ma, Xiufeng Sun, Ying He, Lianghua Lin, Yubing Fu, Kunyu Liao, Xiaojuan Zhou, Shan Jiang, Guofeng Fu, Jian Tang, Wei Han, Xiao Lei Chen, Wenzhu Fan, Yazhen Hong, Jiahuai Han, Xiangyang Huang, Bo-An Li, Nengming Xiao, Changchun Xiao, Guo Fu, Wen-Hsien Liu
RÉSUMÉ

Molecular pathways controlling emigration of mature thymocytes from thymus to the periphery remain incompletely understood. Here, we show that T cell–specific ablation of glycogen synthase kinase 3 (GSK3) led to severely impaired thymic egress. In the absence of GSK3, β-catenin accumulated in the cytoplasm, where it associated with and activated Akt, leading to phosphorylation and degradation of Foxo1 and downregulation of Klf2 and S1P1 expression, thereby preventing emigration of thymocytes. A cytoplasmic membrane-localized β-catenin excluded from the nucleus promoted Akt activation, suggesting a new function of β-catenin independent of its role as a transcriptional activator. Furthermore, genetic ablation of β-catenin, retroviral expression of a dominant negative Akt mutant, and transgenic expression of a constitutively active Foxo1 restored emigration of GSK3-deficient thymocytes. Our findings establish an essential role for GSK3 in thymocyte egress and reveal a previously unidentified signaling function of β-catenin in the cytoplasm.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Millipore
Gel d'affinité ANTI-FLAG® M2, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-Klf2 Antibody, serum, from rabbit