Accéder au contenu
Merck

Recovery of Flexible Polyurethane Foam Waste for Efficient Reuse in Industrial Formulations.

Polymers (2020-07-16)
Gabriel Kiss, Gerlinde Rusu, Francisc Peter, Ionuț Tănase, Geza Bandur
RÉSUMÉ

Ester polyurethane (PU) foam waste was reacted at atmospheric pressure in an autoclave and using microwaves with diethylene glycol (DEG) at different PU/DEG ratios in the presence of diethanolamine as a catalyst to find the glycolysis conditions that allow for the improved recovery of the PU foam waste and enable the recycling of the whole glycolysis product in foam formulations suitable for industrial application. The recycled polyol was characterized by dynamic viscosity, hydroxyl number, water content, and density, while thermal stability was assessed using thermogravimetric analysis. In the PU foam formulation, 1% and 5% of the glycolyzed material was reused. The relationship between the reuse level of the recycled polyol and the physical properties of the foam was thoroughly investigated. It was observed that both hardness and air flow decreased with increasing recycled polyol content, particularly for the polyester type foam, while tensile strength and compression strength increased. Depending on the amount of recycled polyol and catalyst used, polyether-based foams could be obtained with a low air permeability, needed in special applications as sealed foams, or with higher air permeability desirable for comfort PU foams. The results open the way for further optimization studies of industrial polyurethane foam formulations using a glycolysis process without any separation stage.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Tolylene-2,4-diisocyanate, technical grade, 80%