- The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products.
The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products.
Free radical biology & medicine (2004-05-12)
Hao Zhang, Christopher Andrekopoulos, Joy Joseph, John Crow, B Kalyanaraman
PMID15135171
RÉSUMÉ
In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.
MATÉRIAUX
Référence du produit
Marque
Description du produit
Sigma-Aldrich
Superoxide Dismutase bovine, recombinant, expressed in E. coli, lyophilized powder, ≥2500 units/mg protein, ≥90% (SDS-PAGE)