Accéder au contenu
Merck

Onset of deaminase APOBEC3B induction in response to DNA double-strand breaks.

Biochemistry and biophysics reports (2018-11-13)
Atsuhiro Shimizu, Haruka Fujimori, Yusuke Minakawa, Yusuke Matsuno, Mai Hyodo, Yasufumi Murakami, Ken-Ichi Yoshioka
RÉSUMÉ

Deamination of 5-methyl cytosine is a major cause of cancer-driver mutations in inflammation-associated cancers. The deaminase APOBEC3B is expressed in these cancers and causes mutations under replication stress; however, the mechanisms by which APOBEC3B mediates deamination and its association with genomic disorders are still unclear. Here, we show that APOBEC3B is stabilized to induce deamination reaction in response to DNA double-strand breaks (DSBs), resulting in the formation of long-lasting DSBs. Uracil, the major deamination product, is subsequently targeted by base excision repair (BER) through uracil-DNA glycosylase 2 (UNG2); hence late-onset DSBs arise as by-products of BER. The frequency of these delayed DSBs was increased by treatment of cells with a PARP inhibitor, and was suppressed following knock-down of UNG2. The late-onset DSBs were induced in an ATR-dependent manner. Those secondary DSBs were persistent, unlike DSBs directly caused by γ-ray irradiation. Overall, these results suggest that the deaminase APOBEC3B is induced in response to DSBs, leading to long-lasting DSB formation in addition to mutagenic 5me-C>T transition induction.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-phospho-histone H2A.X (Ser139), clone JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
Chlorure d′ammonium, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Anti-p53 Binding Protein 1 (Ab-1) Rabbit pAb, liquid, Calbiochem®