Skip to Content
Merck
All Photos(3)

Key Documents

542342

Sigma-Aldrich

Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)

average Mn ~14,600

Synonym(s):

Pluronic® F-108, PEG-PPG-PEG

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
MDL number:
UNSPSC Code:
12352112
PubChem Substance ID:
NACRES:
NA.23

vapor density

>1 (vs air)

Quality Level

vapor pressure

<0.3 mmHg ( 20 °C)

mol wt

average Mn ~14,600

composition

PEG, 82.5 wt. %

pH

6.0-7.4 (2.5% in H2O)

surface tension

41 dyn/cm, 25 °C, 0.1 wt. % in H2O

viscosity

2,800 cP(77 °C, Brookfield)(lit.)

transition temp

cloud point >100 °C (1 wt. % aqueous solution)
Tm (DSC) 60 °C (at peak)

HLB

>24.0

InChI

1S/C3H6O.C2H4O/c1-3-2-4-3;1-2-3-1/h3H,2H2,1H3;1-2H2

InChI key

RVGRUAULSDPKGF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Pluronic® F108 is a tri block copolymer and a terminal primary dihydroxy-functional oligomer. It behaves as a nonionic surfactant. It is a surface active material whose properties are dependent on the hydrophilic (EO)/hydrophobic (PO) ratio. High EO content gives better o/w stabilizers.

Application

Hard and soft surface cleaners, defoamers in coatings and water treatment. Lubricant in metal working, anti-foaming aid and extender for linear and cross-linked polyesters and polyurethanes.
Pluronic® F108 was used as a surfactant in a medium to prevent the cells from sticking to the surface of a microfluidic device.{7}-{11}Pluronic may be potentially useful as a pathogen detector. It was used in the analysis of microbial community and genotyping single nucleotide polymorphisms (SNPs).{9} The triblock copolymer was used as a pore template for the fabrication of porous carbons and carbon/silica composite.{10}

Features and Benefits

Surface active material whose properties are dependent on the hydrophilic (EO)/hydrophobic (PO) ratio. High EO content gives better o/w stabilizers.

Physical form

Terminal primary dihydroxy-functional oligomer.

Legal Information

Pluronic is a registered trademark of BASF

Storage Class Code

11 - Combustible Solids

WGK

WGK 1


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Özden Baltekin et al.
Proceedings of the National Academy of Sciences of the United States of America, 114(34), 9170-9175 (2017-08-10)
The emergence and spread of antibiotic-resistant bacteria are aggravated by incorrect prescription and use of antibiotics. A core problem is that there is no sufficiently fast diagnostic test to guide correct antibiotic prescription at the point of care. Here, we
Agnes Miermont et al.
Scientific reports, 9(1), 13782-13782 (2019-09-26)
The maintenance of precise cell volume is critical for cell survival. Changes in extracellular osmolarity affect cell volume and may impact various cellular processes such as mitosis, mitochondrial functions, DNA repair as well as cell migration and proliferation. Much of
Yvonne Zagzag et al.
Scientific reports, 10(1), 1932-1932 (2020-02-08)
We demonstrate that holographic particle characterization can directly detect binding of proteins to functionalized colloidal probe particles by monitoring the associated change in the particles' size. This label-free molecular binding assay uses in-line holographic video microscopy to measure the diameter
Eric Parigoris et al.
Advanced healthcare materials, 10(4), e2000810-e2000810 (2020-06-26)
This paper describes mammary organoids with a basal-in phenotype where the basement membrane is located on the interior surface of the organoid. A key materials consideration to induce this basal-in phenotype is the use of a minimal gel scaffold that
Wontae Lee et al.
Nature communications, 10(1), 144-144 (2019-01-13)
Understanding how forces orchestrate tissue formation requires technologies to map internal tissue stress at cellular length scales. Here, we develop ultrasoft mechanosensors that visibly deform under less than 10 Pascals of cell-generated stress. By incorporating these mechanosensors into multicellular spheroids

Articles

Mesoporous Materials Synthesis

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service