Skip to Content
Merck
  • Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize.

Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize.

PloS one (2011-08-04)
Yong Hu, Lu Zhang, Lin Zhao, Jun Li, Shibin He, Kun Zhou, Fei Yang, Min Huang, Li Jiang, Lijia Li
ABSTRACT

Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Goat IgG (whole molecule)–Alkaline Phosphatase antibody produced in rabbit, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-Histone H3 Antibody, 0.5 mg/mL, Upstate®
Sigma-Aldrich
Anti-acetyl-Histone H3 (Lys9) Antibody, serum, Upstate®
Sigma-Aldrich
Anti-acetyl-Histone H4 Antibody, serum, Upstate®
Sigma-Aldrich
Normal Rabbit IgG, Alexa Fluor 488 conjugate, Normal Rabbit IgG Polyclonal Antibody control validated for use in Immunofluorescence.