Skip to Content
Merck
  • CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover.

CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover.

Nature cell biology (2014-05-27)
Samantha J Stehbens, Matthew Paszek, Hayley Pemble, Andreas Ettinger, Sarah Gierke, Torsten Wittmann
ABSTRACT

Turnover of integrin-based focal adhesions (FAs) with the extracellular matrix (ECM) is essential for coordinated cell movement. In collectively migrating human keratinocytes, FAs assemble near the leading edge, grow and mature as a result of contractile forces and disassemble underneath the advancing cell body. We report that clustering of microtubule-associated CLASP1 and CLASP2 proteins around FAs temporally correlates with FA turnover. CLASPs and LL5β (also known as PHLDB2), which recruits CLASPs to FAs, facilitate FA disassembly. CLASPs are further required for FA-associated ECM degradation, and matrix metalloprotease inhibition slows FA disassembly similarly to CLASP or PHLDB2 (LL5β) depletion. Finally, CLASP-mediated microtubule tethering at FAs establishes an FA-directed transport pathway for delivery, docking and localized fusion of exocytic vesicles near FAs. We propose that CLASPs couple microtubule organization, vesicle transport and cell interactions with the ECM, establishing a local secretion pathway that facilitates FA turnover by severing cell-matrix connections.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gelatin from porcine skin, powder, gel strength ~300 g Bloom, Type A, BioReagent, suitable for electrophoresis, suitable for cell culture
Sigma-Aldrich
Sequa-brene, gelatinous solid
Sigma-Aldrich
Sodium borohydride, powder, ≥98.0%