Skip to Content
Merck
  • Oxidation of catechols during positive ion electrospray mass spectrometric analysis: evidence for in-source oxidative dimerization.

Oxidation of catechols during positive ion electrospray mass spectrometric analysis: evidence for in-source oxidative dimerization.

Rapid communications in mass spectrometry : RCM (2014-09-03)
Luis E Sojo, Navjot Chahal, Bernd O Keller
ABSTRACT

Catechols are an important class of analytes occurring in many natural and synthetic products. Electrospray ionization in negative mode is the preferred way of ion generation for these compounds; however, studies in positive ion mode can reveal their potential for in-source oxidation and further structural changes, some of which may also occur in the solution phase. Therefore in-source oxidation can provide a forward look into the potential for solution oxidation. 1:1 Acetonitrile/water solutions of catechol (Cat), 4,5-dichlorocatechol (4,5-DCC), 3,4-dichlorocatechol (3,4-DCC) and tetrachlorocatechol (TCC) were analyzed by positive ion ultrahigh-performance liquid chromatography (UHPLC/ESI-MS) and UHPLC/ESI-MS/MS under various emitter voltages to assess their liability towards in-source oxidation. Structural information for in-source generated compounds was obtained through the use of product ion scans. Using catechols as probe compounds, we have demonstrated that under the conditions used in many analytical laboratories in-source oxidation can severely affect the sensitivity and response functions of an analyte. Under standard UHPLC conditions (300 μL/min flow rate), Cat, 3,4-DCC, 4,5-DCC and TCC can undergo in-source oxidation. The extent of oxidation is dependent either on the instrument or on the characteristics of the emitter. This is evident by a change in the isotopic pattern of these compounds and the generation of ions at lower m/z values due to a loss of 1 and/or 2 hydrogens and electrons. In the case of catechol, the formation of a dimer resulting from in-source oxidation reactions was observed. This dimer has the same fragmentation pattern as the dimer generated by oxidation in the solution phase. The present work demonstrates the potential of positive ion ESI for oxidizing electroactive compounds during regular analytical operation using commercially available mass spectrometers. Using Cat and some of its chlorinated analogues as probe compounds, we have demonstrated that under the conditions used in many analytical laboratories in-source oxidation and dimerization can and does take place.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
1,2-Dihydroxybenzene, ReagentPlus®, ≥99%
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9% (GC)
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Pyrocatechol, ≥99%
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline