Skip to Content
Merck
  • Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel.

Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel.

Biomaterials (2013-03-08)
Andrea J Mothe, Roger Y Tam, Tasneem Zahir, Charles H Tator, Molly S Shoichet
ABSTRACT

Traumatic injury to the spinal cord causes cell death, demyelination, axonal degeneration, and cavitation resulting in functional motor and sensory loss. Stem cell therapy is a promising approach for spinal cord injury (SCI); however, this strategy is currently limited by the poor survival and uncontrolled differentiation of transplanted stem cells. In an attempt to achieve greater survival and integration with the host tissue, we examined the survival and efficacy of adult brain-derived neural stem/progenitor cells (NSPCs) injected within a hydrogel blend of hyaluronan and methyl cellulose (HAMC) into a subacute, clinically relevant model of rat SCI. Prior to use, HAMC was covalently modified with recombinant rat platelet-derived growth factor-A (rPDGF-A) to promote oligodendrocytic differentiation. SCI rats transplanted with NSPCs in HAMC-rPDGF-A showed improved behavioral recovery compared to rats transplanted with NSPCs in media. Rats with NSPC/HAMC-rPDGF-A transplants had a significant reduction in cavitation, improved graft survival, increased oligodendrocytic differentiation, and sparing of perilesional host oligodendrocytes and neurons. These data suggest that HAMC-rPDGF-A is a promising vehicle for cell delivery to the injured spinal cord.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 750, contains 900-1100 ppm MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 6,000, contains 1000 ppm 4-methoxyphenol as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 2000, contains ~1000 ppm MeHQ as stabilizer
Sigma-Aldrich
Methyl cellulose, viscosity 3000-5500 mPa.s, 2 % in H2O(20 °C)
Sigma-Aldrich
Methyl cellulose, meets USP testing specifications, 26.0-33.0% (methoxyl group, on Dry Basis), viscosity: 400 cP
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor
Sigma-Aldrich
Methyl cellulose, 26.0-33.0% (Methoxy group (dry basis)), meets USP testing specifications, viscosity: 1,500 cP
Sigma-Aldrich
Methyl cellulose, 27.5-31.5% (Methoxyl content), viscosity: 400 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 25 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 15 cP, BioReagent, suitable for cell culture
Sigma-Aldrich
Methyl cellulose, viscosity: 4,000 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 1,500 cP
Sigma-Aldrich
Methyl cellulose, tested according to Ph. Eur.
Sigma-Aldrich
Methyl cellulose, 27.5-31.5% methoxyl basis
Sigma-Aldrich
Methyl cellulose, medium viscosity, Methoxyl content 27.5-31.5 %
Sigma-Aldrich
Methyl cellulose, viscosity: 15 cP
Sigma-Aldrich
Methyl cellulose, Vetec, reagent grade
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 10,000, contains MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 20,000, contains MEHQ as inhibitor