- Purification and characterization of heterologously expressed nitrilases from filamentous fungi.
Purification and characterization of heterologously expressed nitrilases from filamentous fungi.
Nitrilases from Aspergillus niger CBS 513.88, A. niger K10, Gibberella moniliformis, Neurospora crassa OR74A, and Penicillium marneffei ATCC 18224 were expressed in Escherichia coli BL21-Gold (DE3) after IPTG induction. N. crassa nitrilase exhibited the highest yield of 69,000 U L(-1) culture. Co-expression of chaperones (GroEL/ES in G. moniliformis and P. marneffei; GroEL/ES and trigger factor in N. crassa and A. niger CBS 513.88) enhanced the enzyme solubility. Specific activities of strains expressing the former two enzymes increased approximately fourfold upon co-expression of GroEL/ES. The enzyme from G. moniliformis (co-purified with GroEL) preferred benzonitrile as substrate (K(m) of 0.41 mM, V(max) of 9.7 μmol min(-1) mg(-1) protein). The P. marneffei enzyme (unstable in its purified state) exhibited the highest V(max) of 7.3 μmol min(-1) mg(-1) protein in cell-free extract, but also a high K(m) of 15.4 mM, for 4-cyanopyridine. The purified nitrilases from A. niger CBS 513.88 and N. crassa acted preferentially on phenylacetonitrile (K(m) of 3.4 and 2.0 mM, respectively; V(max) of 10.6 and 17.5 μmol min(-1) mg(-1) protein, respectively), and hydrolyzed also (R,S)-mandelonitrile with higher K(m) values. Significant amounts of amides were only formed by the G. moniliformis nitrilase from phenylacetonitrile and 4-cyanopyridine.