Skip to Content
Merck
  • Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition.

Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition.

Lipids (2009-10-23)
S M Zhao, L J Ren, L Chen, X Zhang, M L Cheng, W Z Li, Y Y Zhang, S Z Gao
ABSTRACT

Intramuscular fat (IMF) content affects meat quality and varies in different pig breeds. However, the underlying mechanisms of different IMF depositions in different genetic backgrounds of pigs have not been fully elucidated as yet. Lipid metabolism theoretically contributes to the variation of IMF content. The expression levels of genes and proteins as well as enzyme activities implicated in muscle lipid metabolism were investigated, which included lipogenetic genes (SREBP-1c and FAS), fatty acid transporting genes (H-FABP and A-FABP), fatty acid oxidative gene (CPT-1B) and lipolytic genes (ATGL and HSL) as well as the desaturated fatty acid gene (SCD). Longissimus muscle samples were collected from fatty Wujin pigs and lean Landrace pigs. Results showed that the average daily gain of Wujin pigs was lower than that of Landrace pigs. Wujin pigs had greater adipocyte diameter, IMF content and PUFA percentage than that of Landrace pigs. Compared with Landrace pigs, Wujin pigs exhibited higher expression levels, both in mRNA and protein, of FAS, SREBP-1c, SCD, A-FABP and H-FABP genes and lower expression levels of CPT-1B, HSL and ATGL genes. Overall, Wujin pigs possessed higher mRNA abundance, protein expression or enzyme activities of anabolism, fatty acid transportation and desaturation, and lower catabolism. Therefore, the mechanism of higher IMF content in fatty pigs may be due to the higher capacity of lipogenesis and fatty acid transportation and the lower capacity of lipolysis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-FABP3 antibody produced in rabbit, IgG fraction of antiserum