Skip to Content
Merck
  • Ythdf2-mediated m6A mRNA clearance modulates neural development in mice.

Ythdf2-mediated m6A mRNA clearance modulates neural development in mice.

Genome biology (2018-06-02)
Miaomiao Li, Xu Zhao, Wei Wang, Hailing Shi, Qingfei Pan, Zhike Lu, Sonia Peña Perez, Rajikala Suganthan, Chuan He, Magnar Bjørås, Arne Klungland
ABSTRACT

N 6 -methyladenosine (m6A) modification in mRNAs was recently shown to be dynamically regulated, indicating a pivotal role in multiple developmental processes. Most recently, it was shown that the Mettl3-Mettl14 writer complex of this mark is required for the temporal control of cortical neurogenesis. The m6A reader protein Ythdf2 promotes mRNA degradation by recognizing m6A and recruiting the mRNA decay machinery. We show that the conditional depletion of the m6A reader protein Ythdf2 in mice causes lethality at late embryonic developmental stages, with embryos characterized by compromised neural development. We demonstrate that neural stem/progenitor cell (NSPC) self-renewal and spatiotemporal generation of neurons and other cell types are severely impacted by the loss of Ythdf2 in embryonic neocortex. Combining in vivo and in vitro assays, we show that the proliferation and differentiation capabilities of NSPCs decrease significantly in Ythdf2 -/- embryos. The Ythdf2 -/- neurons are unable to produce normally functioning neurites, leading to failure in recovery upon reactive oxygen species stimulation. Consistently, expression of genes enriched in neural development pathways is significantly disturbed. Detailed analysis of the m6A-methylomes of Ythdf2 -/- NSPCs identifies that the JAK-STAT cascade inhibitory genes contribute to neuroprotection and neurite outgrowths show increased expression and m6A enrichment. In agreement with the function of Ythdf2, delayed degradation of neuron differentiation-related m6A-containing mRNAs is seen in Ythdf2 -/- NSPCs. We show that the m6A reader protein Ythdf2 modulates neural development by promoting m6A-dependent degradation of neural development-related mRNA targets.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly-L-lysine hydrobromide, mol wt 4,000-15,000 by viscosity
Sigma-Aldrich
Anti-Nestin Antibody, clone rat-401, clone rat-401, Chemicon®, from mouse
Sigma-Aldrich
Monoclonal Anti-MAP2 antibody produced in mouse, clone HM-2, ascites fluid
Sigma-Aldrich
Anti-β-Actin antibody, Mouse monoclonal, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker, Upstate®, from rabbit