Skip to Content
Merck
All Photos(1)

Key Documents

49664

Sigma-Aldrich

Micro particles based on polystyrene, magnetic

10 μm particle size, std dev <0.5 μm

Synonym(s):

Latex beads from PS, magnetic

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352207
NACRES:
NA.54

form

aqueous solution

composition

iron oxide, ≥20%

concentration

5% solids

particle size

10 μm std dev <0.5 μm

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Superparamagnetic nanoparticles embedded in polystyrene microspheres (magnetic beads) play a vital role in cell separation and labeling. In addition, it is also used in various biomedical and bioengineering applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, and drug delivery.
Magnetic polystyrene particles

Application

Micro particles based on polystyrene, magnetic has been used as magnetic biofilm carriers to separate and re-introduce microorganisms in a continuously stirred tank reactors (CSTR). It has also been used in magnetic microrheometry for measuring the cell-size-scale viscoelastic properties of stiffer 3D cell-culture matrices by micromanipulator experiments.

Storage Class Code

12 - Non Combustible Liquids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Yau Kei Chan et al.
ACS applied materials & interfaces, 11(25), 22869-22877 (2019-05-31)
Cells in vitro usually require a solid scaffold to attach and form two-dimensional monolayer structures. To obtain a substrate-free cell monolayer, long culture time and specific detaching procedures are required. In this study, a thin-film-flow-induced strategy is reported to overcome

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service