Skip to Content
Merck
All Photos(1)

Key Documents

802743

Sigma-Aldrich

Aquivion® E98-09S

membrane sheet, contains CF3 polymer chain ends as stabilizer, PFSA eq. wt. 980 g/mole SO3H, L × W × thickness 31 cm × 31 cm × 90 μm

Synonym(s):

Aquivion® SO3H, Tetrafluoroethylene-perfluoro(3-oxa-4-pentenesulfonic acid) copolymer, Ethanesulfonic acid

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[CF2CF(OCF2CF2SO3H)]m[CF2CF2]n
CAS Number:
UNSPSC Code:
26111700
NACRES:
NA.23

form

membrane sheet

contains

CF3 polymer chain ends as stabilizer

L × W × thickness

31 cm × 31 cm × 90 μm

Looking for similar products? Visit Product Comparison Guide

General description

Aquivion® PFSA ionomer membranes are melt-extruded films based on the short-side-chain (SSC) copolymer of Tetrafluoroethylene and the Sulfonyl Fluoride Vinyl Ether (SFVE) F2C=CF-O-(CF2)2-SO2F industrially produced by Solvay Specialty Polymers. Following a film hydrolysis the perfluoropolymer′s functional groups are operative in their sulfonic acid form, SO3H.

Application

Aquivion® PFSA membranes are used for electrochemical applications such as, but not limited to, polymer electrolyte fuel cells, electro-deionization systems, ozone generators, water electrolyzers, hydrogen separators and compressors, redox flow batteries as well as pervaporation or gas humidification systems.

Legal Information

Aquivion is a registered trademark of Syensqo Group

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

Advances in the electrochemical conversion of water to and from hydrogen and oxygen have principally been achieved through the development of new materials and by understanding the mechanisms of the degradation of proton exchange membrane fuel cells (PEMFC) during operation.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service