Skip to Content
Merck
All Photos(2)

Key Documents

110175

Sigma-Aldrich

Tetraethylene glycol

99%

Synonym(s):

Bis[2-(2-hydroxyethoxy)ethyl] ether, Tetra(ethylene glycol), Tetraglycol

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
HO(CH2CH2O)3CH2CH2OH
CAS Number:
Molecular Weight:
194.23
Beilstein:
1634320
EC Number:
MDL number:
UNSPSC Code:
12162002
eCl@ss:
39020714
PubChem Substance ID:
NACRES:
NA.23

vapor density

6.7 (vs air)

Quality Level

vapor pressure

<0.01 mmHg

Assay

99%

mol wt

average Mn 200

refractive index

n20/D 1.459 (lit.)

bp

314 °C (lit.)

mp

−5.6 °C (lit.)

density

1.125 g/mL at 25 °C (lit.)

Ω-end

hydroxyl

α-end

hydroxyl

SMILES string

OCCOCCOCCOCCO

InChI

1S/C8H18O5/c9-1-3-11-5-7-13-8-6-12-4-2-10/h9-10H,1-8H2

InChI key

UWHCKJMYHZGTIT-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

An oligomer of polyethylene glycol, tetra (ethylene glycol) (TEG) is a transparent, colorless, odorless, low volatility, hygroscopic liquid soluble in ethyl alcohol and very soluble in water.

Application

Used for the synthesis of tetraethylene glycol metha acrylate monomer.

Glow discharge plasma deposition of TEG renders surfaces resistant to protein adsorption and cellular attachment.

Caution

Do not confuse with glycofurol, which is also sometimes called tetraglycol.

Storage Class Code

10 - Combustible liquids

WGK

WGK 2

Flash Point(F)

359.6 °F - closed cup

Flash Point(C)

182 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Rachel E Whitmire et al.
Biomaterials, 33(30), 7665-7675 (2012-07-24)
Intra-articular delivery of therapeutics to modulate osteoarthritis (OA) is challenging. Delivery of interleukin-1 receptor antagonist (IL-1Ra), the natural protein inhibitor of IL-1, to modulate IL-1-based inflammation through gene therapy or bolus protein injections has emerged as a promising therapy for
Rieko Asai et al.
Scientific reports, 7(1), 8955-8955 (2017-08-23)
The somatopleure is the amniotic primordium in amniote development, but its boundary to the embryonic body at early embryonic stages and the fate of cells constituting this structure are not well characterized. It also remains unclear how cells behave during
S Köllner et al.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 115, 268-275 (2017-03-23)
The aim of this study was to develop a vaginal self-emulsifying delivery system for curcumin being capable of spreading, of permeating the mucus gel layer and of protecting the drug being incorporated in oily nanodroplets towards mucus interactions and immobilization.
Jin Young Kim et al.
Scientific reports, 7(1), 8610-8610 (2017-08-19)
We herein report the preparation of carbon nanotube (CNT)/Co
Rima J Isaifan et al.
Scientific reports, 7(1), 9466-9466 (2017-08-27)
Transparent titania coatings have self-cleaning and anti-reflection properties (AR) that are of great importance to minimize soiling effect on photovoltaic modules. In this work, TiO

Articles

Dmitri Simberg (University of Colorado Anschutz Medical Campus, USA) reviews the used of dextran and cyclodextrin for the synthesis of nanoparticles used in drug delivery applications.

Dmitri Simberg (University of Colorado Anschutz Medical Campus, USA) reviews the used of dextran and cyclodextrin for the synthesis of nanoparticles used in drug delivery applications.

Professor Randal Lee (University of Houston, USA) discusses design considerations for iron oxide magnetic nanospheres and nanocubes used for biosensing, including synthetic procedures, size, and shape. The effects of these variables are discussed for various volumetric-based and surface-based detection schemes.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

See All

Protocols

99%; Glycerol, ≥99.5%; Tetraethylene glycol, 99%

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service