Direkt zum Inhalt
Merck
  • Neuroinflammation alters cellular proteostasis by producing endoplasmic reticulum stress, autophagy activation and disrupting ERAD activation.

Neuroinflammation alters cellular proteostasis by producing endoplasmic reticulum stress, autophagy activation and disrupting ERAD activation.

Scientific reports (2017-08-16)
Cristina Pintado, Sandra Macías, Helena Domínguez-Martín, Angélica Castaño, Diego Ruano
ZUSAMMENFASSUNG

Proteostasis alteration and neuroinflammation are typical features of normal aging. We have previously shown that neuroinflammation alters cellular proteostasis through immunoproteasome induction, leading to a transient decrease of proteasome activity. Here, we further investigated the role of acute lipopolysaccharide (LPS)-induced hippocampal neuroinflammation in cellular proteostasis. In particular, we focused on macroautophagy (hereinafter called autophagy) and endoplasmic reticulum-associated protein degradation (ERAD). We demonstrate that LPS injection induced autophagy activation that was dependent, at least in part, on glycogen synthase kinase (GSK)-3β activity but independent of mammalian target of rapamycin (mTOR) inhibition. Neuroinflammation also produced endoplasmic reticulum (ER) stress leading to canonical unfolded protein response (UPR) activation with a rapid activating transcription factor (ATF) 6α attenuation that resulted in a time-dependent down-regulation of ERAD markers. In this regard, the time-dependent accumulation of unspliced X-box binding protein (XBP) 1, likely because of decreased inositol-requiring enzyme (IRE) 1α-mediated splicing activity, might underlie in vivo ATF6α attenuation. Importantly, lactacystin-induced activation of ERAD was abolished in both the acute neuroinflammation model and in aged rats. Therefore, we provide a cellular pathway through which neuroinflammation might sensitize cells to neurodegeneration under stress situations, being relevant in normal aging and other disorders where neuroinflammation is a characteristic feature.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Lipopolysaccharide aus Escherichia coli O111:B4, purified by ion-exchange chromatography, TLR ligand tested
Sigma-Aldrich
Anti-GSK3-Antikörper, Klon 4G-1E, clone 4G-1E, Upstate®, from mouse