- Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies.
Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies.
Exposure of cells to UV light of sufficient intensity brings about cross-linking of RNA to proteins which are in direct contact with it in vivo. The major [35S]methionine-labeled proteins which become cross-linked to polyadenylated heterogeneous nuclear RNA in HeLa cells have molecular weights of 120,000 (120K), 68K, 53K, 43K, 41K, 38K, and 36K. Purified complexes of polyadenylated RNA with proteins obtained by UV cross-linking in intact cells were used to immunize mice and generate monoclonal antibodies to several of these proteins. Some properties of three of the proteins, 41K, 43K, and 120K, were characterized with these antibodies. The 41K and 43K polypeptides are highly related. They were recognized by the same antibody (2B12) and have identical isoelectric points (pl = 6.0 +/- 0.2) but different partial peptide maps. The 41K and 43K polypeptides were part of the 40S heterogeneous nuclear ribonucleoprotein particle and appear to correspond to the previously described C proteins (Beyer et al., Cell II:127-138, 1977). A different monoclonal antibody (3G6) defined a new major heterogeneous ribonucleoprotein of 120K. The 41K, 43K, and 120K polypeptides were associated in vivo with both polyadenylated and non-polyadenylated nuclear RNA, and all three proteins were phosphorylated. The monoclonal antibodies recognized similar proteins in human and monkey cells but not in several other vertebrates. Immunofluorescence microscopy demonstrated that these proteins are segregated to the nucleus, where they are part of a fine particulate nonnucleolar structure. In cells extracted in situ with nonionic detergent, all of the 41K and 43K polypeptides were associated with the nucleus at salt concentrations up to 0.5 M NaCl, whereas the 120K polypeptide was completely extracted at this NaCl concentration. A substantial fraction of the 41K and 43K polypeptides (up to 40%) was retained with a nuclear matrix--a structure which is resistant to digestion with DNase I and to extraction by 2 M NaCl, but the 41K and 43K polypeptides were quantitatively removed at 0.5 M NaCl after digestion with RNase.