- Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions.
Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (2015-02-25)
Sergej Repp, Emre Erdem
PMID25708483
ZUSAMMENFASSUNG
ZnO nanoparticles were synthesized by solid state and hydrolysis methods based on the conventional precipitation. In situ growth of ZnO nanoparticles were monitored by photoluminescence spectroscopy (PL). By the help of electron paramagnetic resonance (EPR) technique, detailed analysis of intrinsic defect structure of ZnO was given with respect to mean particle size. In nanoscale concentration of surface defects enormously increased and core defects reduced. In addition, blue-shift was observed in PL spectra at near-band-edge UV region due to e-h recombination. Calculation of band gap energies by the aid of Brus equation revealed consistent results with the experimental observations.
MATERIALIEN
Produktnummer
Marke
Produktbeschreibung
Sigma-Aldrich
Natriumhydroxid, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Natriumhydroxid, anhydrous, free-flowing, Redi-Dri™, reagent grade, ≥98%, pellets