Direkt zum Inhalt
Merck
  • ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis.

ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis.

The Plant cell (2014-11-22)
Teagen D Quilichini, A Lacey Samuels, Carl J Douglas
ZUSAMMENFASSUNG

Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Saccharose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Saccharose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
USP
Saccharose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Essigsäure, for luminescence, BioUltra, ≥99.5% (GC)
USP
Eisessig, United States Pharmacopeia (USP) Reference Standard
Supelco
Saccharose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Essigsäure, ≥99.5%, FCC, FG
Sigma-Aldrich
Saccharose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Essigsäure, natural, ≥99.5%, FG
Sigma-Aldrich
5α-Androstan-17β-ol-3-on, ≥97.5%
Sigma-Aldrich
Stickstoff, ≥99.998%
Sigma-Aldrich
Saccharose, meets USP testing specifications
Supelco
Essigsäure, analytical standard
Sigma-Aldrich
5α-Androstan-17β-ol-3-on, purum, ≥99.0% (TLC)
Sigma-Aldrich
Saccharose, ACS reagent
Sigma-Aldrich
Saccharose, puriss., meets analytical specification of Ph. Eur., BP, NF
Millipore
Saccharose, suitable for microbiology, ACS reagent, ≥99.0%
Supelco
Saccharose, analytical standard, for enzymatic assay kit SCA20
Saccharose, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Essigsäure-12C2, 99.9 atom % 12C
Supelco
5α-Androstan-17β-ol-3-on, VETRANAL®, analytical standard