Direkt zum Inhalt
Merck

Knockdown of hTERT by siRNA inhibits cervical cancer cell growth in vitro and in vivo.

International journal of oncology (2014-06-13)
Ying-Ai Shi, Qiang Zhao, Li-Hong Zhang, Wei Du, Xue-Yao Wang, Xu He, Shan Wu, Yu-Lin Li
ZUSAMMENFASSUNG

Human telomerase reverse transcriptase (hTERT) is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. It has been reported that telomerase and hTERT are significantly upregulated in majority of cancers including cervical cancer, thus, downregulation of hTERT is a promising target in malignant tumor treatment. We established a short interfering RNA (siRNA) targeting hTERT, and transfected it into HeLa cells (a cervical cancer cell line) to investi-gate the effect of cell proliferation, apoptosis, migration and invasion in cervical cancer cells. The results showed that siRNA targeting hTERT could effectively knock down hTERT expression, remarkably suppress telomerase activity, cell proliferation, migration and invasion, and induced cell apoptosis of cervical cancers cells in vitro. In addition, we evaluated whether siRNA targeting hTERT affects tumor growth in nude mice, and found that it dramatically inhibited tumorigenesis and growth of mice injected with siRNA targeting hTERT. Furthermore, we also found that knockdown of hTERT was able to significantly suppress constitutive phosphorylation of Akt, PI3K, which might imply that reduction of hTERT inhibited tumor growth via the PI3K/Akt signaling pathway to some extent. These results suggest that the suppression of hTERT expression by siRNA inhibits cervical cancer cell growth in vitro and in vivo, and may provide a novel target for anticancer gene therapy.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥98.5% (GC)
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥99.0% (T)