Direkt zum Inhalt
Merck
  • Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles.

Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles.

Colloids and surfaces. B, Biointerfaces (2012-12-25)
Behzad Haghighi, Mahmoud Amouzadeh Tabrizi
ZUSAMMENFASSUNG

An overoxidized polypyrrole (OOPPy) film was electrodeposited on a glassy carbon electrode (GCE) and the modified electrode (GCE/OOPPy) was then decorated with Au nanoparticles (nanoAu). Glucose oxidase was immobilized on the surface of nanoAu decorated OOPPy modified GCE to fabricate a novel glucose biosensor (GCE/OOPPy-nanoAu/GOx). Cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were used to characterize the modified electrodes. A pair of well-defined redox peaks with a formal potential (E°') of -0.449 V and a peak to peak separation (ΔE(p)) of 28 mV was observed for the direct electron transfer (DET) of the immobilized GOx. The electron transfer rate constant (k(s)) was calculated to be 10.3 s(-1). The fabricated glucose biosensor was employed for the determination of glucose in the concentration range between 1 and 8mM using cyclic voltammetry and amperometry. The results clearly demonstrate that nanoAu decorated OOPPy film is an excellent biocompatible scaffold for the immobilization of GOx and fabrication of a glucose biosensor.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Polypyrrol, conductivity 10-50 S/cm (pressed pellet)
Sigma-Aldrich
Polypyrrol, doped, conductivity 30 S/cm (bulk), extent of labeling: 20 wt. % loading, composite with carbon black
Sigma-Aldrich
Polypyrrol, doped, conductivity 0.5-1.5 S/cm (pressed pellet, typical), extent of labeling: ~5 wt. % loading, coated on titanium dioxide