Direkt zum Inhalt
Merck
  • Alteration of cadmium-induced mutational spectrum by catalase depletion in Chinese hamster ovary-K1 cells.

Alteration of cadmium-induced mutational spectrum by catalase depletion in Chinese hamster ovary-K1 cells.

Mutation research (2001-10-24)
J I Chao, J L Yang
ZUSAMMENFASSUNG

Previously, we have demonstrated that cadmium acetate significantly induces hprt mutation frequency in Chinese hamster ovary (CHO)-K1 and that 3-amino-1,2,4-triazole (3AT), a catalase inhibitor, potentiates the mutagenicity of cadmium [Chem. Res. Toxicol. 9 (1996) 1360-1367]. In this study, we investigate the role of intracellular peroxide in the molecular nature of mutations induced by cadmium. Using 2',7'-dichlorofluorescin diacetate and fluorescence spectrophotometry, we have shown that cadmium dose-dependently increased the amounts of intracellular peroxide and the levels were significantly enhanced by 3AT. Furthermore, we have characterized and compared the hprt mutation spectra in 6-thioguanine-resistant mutants derived from CHO-K1 cells exposed to 4 microM of cadmium acetate for 4h in the absence and presence of 3AT. The mutation frequency induced by cadmium and cadmium plus 3AT was 11- and 16-fold higher than that observed in untreated populations (2.2 x 10(-6)), respectively. A total of 40 and 51 independent hprt mutants were isolated from cadmium and cadmium plus 3AT treatments for mRNA-polymerase chain reaction (PCR), genomic DNA-PCR and DNA sequencing analyses. 3AT co-administration significantly enhanced the frequency of deletions induced by cadmium. Cadmium induced more transversions than transitions. In contrast, 3AT co-administration increased the frequency of GC-->AT transitions and decreased the frequencies of TA-->AT and TA-->GC transversions. Together, the results suggest that intracellular catalase is important to prevent the formation of oxidative DNA damage as well as deletions and GC-->AT transitions upon cadmium exposure.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Cadmiumacetat Dihydrat, reagent grade, 98%
Sigma-Aldrich
Cadmium(II) acetate, anhydrous, 99.995%
Cadmium(II) acetate, SAFC Hitech®, anhydrous, 99.995%