Saltar al contenido
Merck

[Fe(CN)5(isoniazid)](3-): an iron isoniazid complex with redox behavior implicated in tuberculosis therapy.

Journal of inorganic biochemistry (2014-09-06)
Eduardo Henrique Silva Sousa, Francisca Gilmara de Mesquita Vieira, Jennifer S Butler, Luiz Augusto Basso, Diógenes S Santiago, Izaura C N Diógenes, Luiz Gonzaga de França Lopes, Peter J Sadler
RESUMEN

Tuberculosis has re-emerged as a worldwide threat, which has motivated the development of new drugs. The antituberculosis complex Na3[Fe(CN)5(isoniazid)] (IQG607) in particular is of interest on account of its ability to overcome resistance. IQG607 has the potential for redox-mediated-activation, in which an acylpyridine (isonicotinoyl) radical could be generated without assistance from the mycobacterial KatG enzyme. Here, we have investigated the reactivity of IQG607 toward hydrogen peroxide and superoxide, well-known intracellular oxidizing agents that could play a key role in the redox-mediated-activation of this compound. HPLC, NMR and electronic spectroscopy studies showed a very fast oxidation rate for bound isoniazid, over 460-fold faster than free isoniazid oxidation. A series of EPR spin traps were used for detection of isonicotinoyl and derived radicals bound to iron. This is the first report for an isonicotinoyl radical bound to a metal complex, supported by (14)N and (1)H hyperfine splittings for the POBN and PBN trapped radicals. POBN and PBN exhibited average hyperfine coupling constants of aN=15.6, aH=2.8 and aN=15.4, aH=4.7, respectively, which are in close agreement to the isonicotinoyl radical. Radical generation is thought to play a major role in the mechanism of action of isoniazid and this work provides strong evidence for its production within IQG607, which, along with biological and chemical oxidation data, support a redox-mediated activation mechanism. More generally the concept of redox activation of metallo prodrugs could be applied more widely for the design of therapeutic agents with novel mechanisms of action.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido trifluoroacético, ReagentPlus®, 99%
Sigma-Aldrich
Ácido trifluoroacético, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Hidróxido de sodio, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Hidróxido de sodio, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Hidróxido de sodio solution, 50% in H2O
Sigma-Aldrich
Sulfato de amonio, ACS reagent, ≥99.0%
Sigma-Aldrich
Sulfato de amonio, for molecular biology, ≥99.0%
Sigma-Aldrich
Ácido trifluoroacético, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Hidróxido de sodio solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Hidróxido de sodio solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ácido L-ascórbico, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Ácido L-ascórbico, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Hidróxido de sodio, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Hidróxido de sodio, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Hidróxido de sodio, reagent grade, 97%, powder
Sigma-Aldrich
Ácido L-ascórbico, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Hidróxido de sodio, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets