Skip to Content
Merck
All Photos(4)

Key Documents

739448

Sigma-Aldrich

Silver nanowires

diam. × L 100 nm × 6 μm, 0.5% (isopropyl alcohol suspension)

Synonym(s):

Silver nanofibers, Silver nanowhiskers, Silver nanowire

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ag
CAS Number:
Molecular Weight:
107.87
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

form

liquid (suspension)
nanowires

concentration

0.5% (isopropyl alcohol suspension)

diam. × L

100 nm × 6 μm

impurities

<5 wt. % non-volatile organics (TGA)

SMILES string

[Ag]

InChI

1S/Ag

InChI key

BQCADISMDOOEFD-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Silver Nanowires are useful in a wide variety of conductive, optical and anti-microbial applications such as Touchscreen displays, Medical Imaging and Sterile Clothing.

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2 - Flam. Liq. 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

55.0 °F - closed cup

Flash Point(C)

12.8 °C - closed cup


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hristina Staleva et al.
Physical chemistry chemical physics : PCCP, 11(28), 5889-5896 (2009-07-10)
Transient absorption experiments with diffraction-limited spatial resolution have been used to study the optical absorption properties and dynamics of isolated, single silver nanowires. The images and polarization analysis show that the near-IR pump and near-UV probe beams couple to fundamentally
Rui Wang et al.
Journal of nanoscience and nanotechnology, 13(6), 3851-3854 (2013-07-19)
The present studies reveal that silver nanoparticles (AgNPs) can induce apoptosis and enhance radio-sensitivity on cancer cells. In this paper, we mainly investigated the effect of AgNPs on rat glioma C6 cells upon the combination treatment of hyperthermia treatment (HTT).
Sa Ram Lee et al.
Journal of biomedical nanotechnology, 9(7), 1241-1244 (2013-08-06)
We demonstrate simultaneous detection of surface-enhanced Raman scattering (SERS) and fluorescence signals from a silver microbead. For the dual signal generation, silver microbeads with a diameter of 15 microm were functionalized with benzenethiol (BT) as a Raman tag and a
S S Sudha et al.
Indian journal of experimental biology, 51(5), 393-399 (2013-07-05)
Silver nanoparticles is known to have antimicrobial affects. Cyanobacteria isolates from muthupet mangrove includes Aphanothece sp, Oscillatoria sp, Microcoleus sp, Aphanocapsa sp, Phormidium sp, Lyngbya sp, Gleocapsa sp, Synechococcus sp, Spirulina sp with were set in compliance with their cellular
Muthusamy Prabhu et al.
Journal of nanoscience and nanotechnology, 13(8), 5327-5339 (2013-07-26)
In this study, silver-doped silica- and phosphate-based nanobioactive glass compositions (58SiO2-(33- x)CaO-9P2O5-xAg2O) (x = 0, 0.5, 1, 2 and 3 mol%) were synthesised by a simple and cost-effective sol-gel method. The prepared samples were characterised by X-ray diffraction, Fourier transform

Articles

The ability to pattern conductive electrodes is technologically relevant for several applications, including photovolatics, displays, sensors, and biomedical devices.

Silver nanomaterials have unique physical, chemical, and optical properties that are currently being leveraged for a wide variety of biological applications.

In many technologies, performance requirements drive device dimensions below the scale of electron mean free paths (λe). This trend has increased scientific interest and technological importance of electrical resistivities at the nanoscale.

Among various ceramics, one-dimensional (1-D) piezoelectric ceramics have attracted significant scientific attention for use in energy harvesting.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service