Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

517011

Sigma-Aldrich

Strontium titanate

nanopowder, <100 nm particle size, 99% trace metals basis

Synonym(s):

Strontium metatitanate, Strontium titanium trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
SrTiO3
CAS Number:
Molecular Weight:
183.49
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

99% trace metals basis

form

nanopowder

dielectric constant

300

reaction suitability

reagent type: catalyst
core: titanium

particle size

<100 nm

mp

2060 °C (lit.)

density

4.81 g/mL at 25 °C (lit.)

SMILES string

[Sr++].[O-][Ti]([O-])=O

InChI

1S/3O.Sr.Ti/q;2*-1;+2;

InChI key

VEALVRVVWBQVSL-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Strontium titanate (SrTiO3) is a crystalline oxide material known for its perovskite structure. It exhibits a high dielectric constant and is considered a promising material for various electronic applications. Strontium titanate has a density of 4.81 g/mL at 25 °C (lit.) and a melting point of about 2060°C. This compound is widely used in the production of capacitors, insulators, and piezoelectric devices due to its excellent dielectric properties. Additionally, strontium titanate is employed in the fabrication of thin films for advanced electronic devices, including transistors and sensors. Its unique optical properties also make it suitable for applications in photonics and optoelectronics.

Application

  • Photoinduced electronic and ionic effects in strontium titanate: Focuses on the interaction of strontium titanate with ultraviolet radiation, investigating photoionic processes and photochromic effects, which are crucial for developing optoelectronic devices (M Siebenhofer et al., 2021).
  • The emerging career of strontium titanates in photocatalytic applications: Reviews the role of strontium titanates in photocatalytic applications, particularly emphasizing their utility in environmental remediation processes (N Sharma, K Hernadi, 2022).
  • Recent advances on carrier and exciton self-trapping in strontium titanate: Discusses the self-trapping of carriers and excitons in strontium titanate, providing insights into its electronic properties and implications for semiconductor technologies (ML Crespillo et al., 2019).

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

S A Pauli et al.
Physical review letters, 106(3), 036101-036101 (2011-03-17)
The evolution of the atomic structure of LaAlO_{3} grown on SrTiO_{3} was investigated using surface x-ray diffraction in conjunction with model-independent, phase-retrieval algorithms between two and five monolayers film thickness. A depolarizing buckling is observed between cation and oxygen positions
Claudia Cantoni et al.
Advanced materials (Deerfield Beach, Fla.), 24(29), 3952-3957 (2012-06-20)
Using state-of-the-art, aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for an intrinsic electronic reconstruction at the LAO/STO interface is shown. Simultaneous measurements of interfacial electron density and system polarization are crucial
Min Zhang et al.
Optics express, 20(6), 5936-5941 (2012-03-16)
In this letter, TiO₂ nanocrystalline film was prepared on SrTiO₃ (001) substrate to form an n-n heterojunction active layer. Interdigitated Au electrodes were deposited on the top of TiO₂ film to fabricate modified HMSM (heterojunction metal-semiconductor-metal) ultraviolet photodetector. At 10
Dong Hun Kim et al.
ACS combinatorial science, 14(3), 179-190 (2012-02-23)
Combinatorial pulsed laser deposition (CPLD) using two targets was used to produce a range of transition metal-substituted perovskite-structured Sr(Ti(1-x)M(x))O(3-δ) films on buffered silicon substrates, where M = Fe, Cr, Ni and Mn and x = 0.05-0.5. CPLD produced samples whose
Ariando et al.
Nature communications, 2, 188-188 (2011-02-10)
There are many electronic and magnetic properties exhibited by complex oxides. Electronic phase separation (EPS) is one of those, the presence of which can be linked to exotic behaviours, such as colossal magnetoresistance, metal-insulator transition and high-temperature superconductivity. A variety

Articles

Synthesis, Properties, and Applications of Perovskite-Phase Metal Oxide Nanostructures

Perovskite-phase metal oxides exhibit a variety of interesting physical properties which include ferroelectric, dielectric, pyroelectric, and piezoelectric behavior.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service