Skip to Content
Merck

Midkine promotes neuroblastoma through Notch2 signaling.

Cancer research (2012-12-18)
Satoshi Kishida, Ping Mu, Shin Miyakawa, Masatoshi Fujiwara, Tomoyuki Abe, Kazuma Sakamoto, Akira Onishi, Yoshikazu Nakamura, Kenji Kadomatsu
ABSTRACT

Midkine is a heparin-binding growth factor highly expressed in various cancers, including neuroblastoma, the most common extracranial pediatric solid tumor. Prognosis of patients with neuroblastoma in which MYCN is amplified remains particularly poor. In this study, we used a MYCN transgenic model for neuroblastoma in which midkine is highly expressed in precancerous lesions of sympathetic ganglia. Genetic ablation of midkine in this model delayed tumor formation and reduced tumor incidence. Furthermore, an RNA aptamer that specifically bound midkine suppressed the growth of neuroblastoma cells in vitro and in vivo in tumor xenografts. In precancerous lesions, midkine-deficient MYCN transgenic mice exhibited defects in activation of Notch2, a candidate midkine receptor, and expression of the Notch target gene HES1. Similarly, RNA aptamer-treated tumor xenografts also showed attenuation of Notch2-HES1 signaling. Our findings establish a critical role for the midkine-Notch2 signaling axis in neuroblastoma tumorigenesis, which implicates new strategies to treat neuroblastoma.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-Tyrosine Hydroxylase Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-N-Myc Mouse mAb (NCM II 100), liquid, clone NCM II 100, Calbiochem®
Sigma-Aldrich
Anti-Notch 2 Antibody, NT, serum, from rabbit
Sigma-Aldrich
Anti-HES-1 Antibody, Chemicon®, from rabbit