Skip to Content
Merck
  • Indispensable functions of ABL and PDGF receptor kinases in epithelial adherence of attaching/effacing pathogens under physiological conditions.

Indispensable functions of ABL and PDGF receptor kinases in epithelial adherence of attaching/effacing pathogens under physiological conditions.

American journal of physiology. Cell physiology (2014-05-23)
Carolin F Manthey, Christine B Calabio, Anna Wosinski, Elaine M Hanson, Bruce A Vallance, Alex Groisman, Martín G Martín, Jean Y J Wang, Lars Eckmann
ABSTRACT

Enteropathogenic Escherichia coli (EPEC) and Citrobacter rodentium are attaching-and-effacing (A/E) pathogens that cause intestinal inflammation and diarrhea. The bacteria adhere to the intestinal epithelium, destroy microvilli, and induce actin-filled membranous pedestals but do not invade the mucosa. Adherence leads to activation of several host cell kinases, including FYN, n-SRC, YES, ABL, and ARG, phosphorylation of the bacterial translocated intimin receptor, and actin polymerization and pedestal formation in cultured cells. However, marked functional redundancy appears to exist between kinases, and their physiological importance in A/E pathogen infections has remained unclear. To address this question, we employed a novel dynamic in vitro infection model that mimics transient and short-term interactions in the intestinal tract. Screening of a kinase inhibitor library and RNA interference experiments in vitro revealed that ABL and platelet-derived growth factor (PDGF) receptor (PDGFR) kinases, as well as p38 MAP kinase, have unique, indispensable roles in early attachment of EPEC to epithelial cells under dynamic infection conditions. Studies with mutant EPEC showed that the attachment functions of ABL and PDGFR were independent of the intimin receptor but required bacterial bundle-forming pili. Furthermore, inhibition of ABL and PDGFR with imatinib protected against infection of mice with modest loads of C. rodentium, whereas the kinases were dispensable for high inocula or late after infection. These results indicate that ABL and PDGFR have indispensable roles in early A/E pathogen attachment to intestinal epithelial cells and for in vivo infection with limiting inocula but are not required for late intimate bacterial attachment or high inoculum infections.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)
Sigma-Aldrich
L-Threonine, BioXtra, ≥99.5% (NT)
Sigma-Aldrich
Cycloheximide, ≥90% (HPLC)
SAFC
L-Threonine
Sigma-Aldrich
L-Threonine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Supelco
Cycloheximide, PESTANAL®, analytical standard
Supelco
L-Threonine, Pharmaceutical Secondary Standard; Certified Reference Material
L-Threonine, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Threonine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
MISSION® esiRNA, targeting human ABL1
Sigma-Aldrich
L-Threonine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Cycloheximide, Biotechnology Performance Certified
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Abl1
Sigma-Aldrich
DL-Tyrosine, 99%
Sigma-Aldrich
MISSION® esiRNA, targeting human PDGFRB
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Mttp
Sigma-Aldrich
MISSION® esiRNA, targeting human MTTP
Millipore
Cycloheximide solution, 0.1%, suitable for microbiology
Sigma-Aldrich
Cycloheximide solution, Ready-Made Solution, microbial, 100 mg/mL in DMSO, Suitable for cell culture
Tyrosine, European Pharmacopoeia (EP) Reference Standard