Skip to Content
Merck
  • Myogenin gene expression is not altered in the developing diaphragm of nitrofen-induced congenital diaphragmatic hernia.

Myogenin gene expression is not altered in the developing diaphragm of nitrofen-induced congenital diaphragmatic hernia.

Pediatric surgery international (2014-07-25)
Toshiaki Takahashi, Florian Friedmacher, Hiromizu Takahashi, Alejandro Daniel Hofmann, Prem Puri
ABSTRACT

Pleuroperitoneal folds (PPFs) represent the only source of muscle precursors cells (MPCs) in the primordial diaphragm. However, the exact pathogenesis of malformed PPFs and congenital diaphragmatic hernia (CDH) remains unclear. The muscle-specific transcription factor myogenin plays a key role during development and muscularization of the fetal diaphragm. Although myogenin knockout mice lack skeletal muscle fibers, the diaphragmatic musculature is intact without any defects. It has further been demonstrated that proliferation and differentiation of MPCs in PPFs and developing diaphragms are normal in rodent CDH models. We hypothesized that myogenin gene expression is not altered in malformed PPFs, developing diaphragms and diaphragmatic musculature in the nitrofen-induced CDH model. Pregnant rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested during PPF formation (D13), diaphragmatic development (D14-15) and muscularization (D18-21). Fetal PPFs, developing diaphragms and diaphragmatic musculature were dissected and divided into nitrofen and control groups. Myogenin mRNA levels were analyzed by quantitative real-time polymerase chain reaction, while immunohistochemistry was performed to investigate myogenin protein expression and distribution. Relative mRNA expression of myogenin was not significant different in PPFs (0.30 ± 0.09 vs. 0.48 ± 0.09; P = 0.37), developing diaphragms (1.25 ± 0.29 vs. 1.60 ± 0.32; P=0.53) and diaphragmatic musculature (1.08 ± 0.24 vs. 1.59 ± 0.20; P = 0.15) of nitrofen-exposed fetuses compared to controls. Myogenin immunoreactivity was not altered in the muscular components of malformed PPFs, developing diaphragms and diaphragmatic musculature of nitrofen-exposed fetuses compared to controls. Myogenin gene expression is not altered in PPFs, developing diaphragms and diaphragmatic musculature in the nitrofen-induced CDH model, thus suggesting that diaphragmatic defects in this model develop independent of myogenic processes.

MATERIALS
Product Number
Brand
Product Description

Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Supelco
Chloroform, analytical standard
Supelco
Nitrofen, PESTANAL®, analytical standard
Supelco
Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, amylene stabilized
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%