Skip to Content
Merck
  • Deficient HER3 expression in poorly-differentiated colorectal cancer cells enhances gefitinib sensitivity.

Deficient HER3 expression in poorly-differentiated colorectal cancer cells enhances gefitinib sensitivity.

International journal of oncology (2014-07-16)
Susumu Nakata, Harunari Tanaka, Yuichi Ito, Masayasu Hara, Mitsugu Fujita, Eisaku Kondo, Yukihide Kanemitsu, Yasushi Yatabe, Hayao Nakanishi
ABSTRACT

Poorly-differentiated colorectal cancers (PD-CRC) show high metastatic potential and poor prognosis. However, molecular characteristics of PD-CRC remain unknown to date, particularly in molecular targeting therapy for patients with PD-CRC. In this study, we examined the expression of EGFR, HER2 and HER3 in PD-CRC by immunohistochemical analysis of archived clinical specimens of primary tumors and investigated the sensitivity of PD-CRC cell lines to gefitinib, a tyrosine kinase inhibitor for EGFR in vitro. We found that HER3 expression of PD-CRC among members of the HER family was significantly lower than that of well to moderately differentiated CRC (WMD-CRC) and 37% of the PD cases showed a EGFR+/HER2+/HER3- expression pattern. COLM-5 cells, a PD-CRC-derived cell line, which exhibits EGFR+/HER2+/HER3- expression pattern and recapitulates the typical histology of PD-CRC in xenografted tumors, showed high gefitinib sensitivity both in vitro and in vivo, compared with WMD-CRC cell line (COLM-2). Treatment with gefitinib resulted in the upregulation of p27Kip1 expression and induction of G1 cell cycle arrest, concomitantly associated with inactivation of PI3K/Akt signaling in COLM-5 cells and marked inhibition of xenografted tumors in nude mice, but not evident in COLM-2 cells. Treatment with sodium butyrate, an HDAC inhibitor that induces differentiation, upregulated the expression of HER3 associated with enhancement of the PI3K/Akt signaling, attenuated gefitinib-mediated p27Kip1 upregulation and reduced gefitinib sensitivity in COLM-5 cells in vitro. Furthermore, enforced expression of HER3 in COLM-5 cells resulted in significant resistance to gefitinib treatment both in vitro and in vivo. These findings suggest that deficient HER3 expression plays an important role in gefitinib sensitivity and that a malignant subset of PD with EGFR+/HER2+/HER3- phenotype is a potential candidate for a target of anti-EGFR molecular therapy such as gefitinib.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis