Skip to Content
Merck
  • The gas-phase reaction of methane sulfonic acid with the hydroxyl radical without and with water vapor.

The gas-phase reaction of methane sulfonic acid with the hydroxyl radical without and with water vapor.

Physical chemistry chemical physics : PCCP (2013-03-02)
Solvejg Jørgensen, Camilla Jensen, Henrik G Kjaergaard, Josep M Anglada
ABSTRACT

The gas phase reaction between methane sulfonic acid (CH3SO3H; MSA) and the hydroxyl radical (HO), without and with a water molecule, was investigated with DFT-B3LYP and CCSD(T)-F12 methods. For the bare reaction we have found two reaction mechanisms, involving proton coupled electron transfer and hydrogen atom transfer processes that produce CH3SO3 and H2O. We also found a third reaction mechanism involving the double proton transfer process, where the products and reactants are identical. The computed rate constant for the oxidation process is 8.3 × 10(-15) cm(3) s(-1) molecule(-1). CH3SO3H forms two very stable complexes with water with computed binding energies of about 10 kcal mol(-1). The presence of a single water molecule makes the reaction between CH3SO3H and HO much more complex, introducing a new reaction that consists in the interchange of H2O between HO and CH3SO3H. Our kinetic calculations show that 99.5% of the reaction involves this interchange of the water molecule and, consequently, water vapor does not play any role in the oxidation reaction of methane sulfonic acid by the hydroxyl radical.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium methanesulfonate, ≥98.0% (dry substance, T)
Sigma-Aldrich
Sodium methanesulfonate, 98%
Sigma-Aldrich
Methanesulfonic acid solution, 4 M (with 0.2% (w/v) tryptamine)
Sigma-Aldrich
Methanesulfonic acid solution, 70 wt. % in H2O
Sigma-Aldrich
Methanesulfonic acid, ≥99.0%
Supelco
Methanesulfonic acid concentrate, 0.1 M CH3SO3H in water (0.1N), eluent concentrate for IC
Sigma-Aldrich
Silver methanesulfonate