Skip to Content
Merck
  • Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain.

Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain.

The AAPS journal (2014-06-12)
Laura Kervezee, Robin Hartman, Dirk-Jan van den Berg, Shinji Shimizu, Yumi Emoto-Yamamoto, Johanna H Meijer, Elizabeth C M de Lange
ABSTRACT

Nearly all bodily processes exhibit circadian rhythmicity. As a consequence, the pharmacokinetic and pharmacodynamic properties of a drug may also vary with time of day. The objective of this study was to investigate diurnal variation in processes that regulate drug concentrations in the brain, focusing on P-glycoprotein (P-gp). This efflux transporter limits the distribution of many drugs in the brain. To this end, the exposure to the P-gp substrate quinidine was determined in the plasma and brain tissue after intravenous administration in rats at six different time points over the 24-h period. Our results indicate that time of administration significantly affects the exposure to quinidine in the brain. Upon inhibition of P-gp, exposure to quinidine in brain tissue is constant over the 24-h period. To gain more insight into processes regulating brain concentrations, we used intracerebral microdialysis to determine the concentration of quinidine in brain extracellular fluid (ECF) and cerebrospinal fluid (CSF) after intravenous administration at two different time points. The data were analyzed by physiologically based pharmacokinetic modeling using NONMEM. The model shows that the variation is due to higher activity of P-gp-mediated transport from the deep brain compartment to the plasma compartment during the active period. Furthermore, the analysis reveals that CSF flux is higher in the resting period compared to the active period. In conclusion, we show that the exposure to a P-gp substrate in the brain depends on time of administration, thereby providing a new strategy for drug targeting to the brain.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phosphoric acid, BioUltra, ≥85% (T)
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Boric acid, BioXtra, ≥99.5%
Sigma-Aldrich
Boric acid, suitable for electrophoresis, ≥99.5%
Sigma-Aldrich
Boric acid, tablet, 1 g boric acid per tablet
Sigma-Aldrich
Phosphoric acid, BioReagent, suitable for insect cell culture, 85%
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Boric acid, 99.97% trace metals basis
Sigma-Aldrich
Phosphoric acid, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Boric acid, 99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid, ≥85 wt. % in H2O, ≥99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Sodium hydroxide solution, purum, ≥32%
Sigma-Aldrich
Boric acid, puriss., meets analytical specification of Ph. Eur., BP, NF, 99.5-100.5%, powder
Sigma-Aldrich
Phosphoric acid, puriss., meets analytical specification of Ph. Eur., BP, NF, FCC, 85.0-88.0%
Sigma-Aldrich
Boric acid, BioReagent, for molecular biology, suitable for cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Phosphoric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥85%
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Quinidine, crystallized, ≥98.0% (dried material, NT)
Sigma-Aldrich
Quinine, suitable for fluorescence, anhydrous, ≥98.0% (dried material, NT)
Quinidine sulfate, European Pharmacopoeia (EP) Reference Standard