Skip to Content
Merck
  • Ascl2 activation by YAP1/KLF5 ensures the self-renewability of colon cancer progenitor cells.

Ascl2 activation by YAP1/KLF5 ensures the self-renewability of colon cancer progenitor cells.

Oncotarget (2018-01-10)
Xiaolong Wei, Jun Ye, Yangyang Shang, Haoyuan Chen, Shanxi Liu, Li Liu, Rongquan Wang
ABSTRACT

Achaete scute-like 2 (Ascl2) is the Wnt signaling target, its regulation by other signaling is undefined. Now we demonstrated that CD133+/CD44+ cell population from HT-29 or Caco-2 cells exhibited cancer stem cell (CSC) properties with highly expressed Ascl2, which is related to the Hippo signaling pathway. YAP1 interference in CD133+/CD44+ HT-29 or Caco-2 cells reduced their proliferation, colony-forming ability and tumorsphere formation in vitro and inhibited the 'stemness'-associated genes and Ascl2 expression. Enforcing YAP1 expression in HT-29 or Caco-2 cells triggered the opposite changes. Ascl2 interference reversed the phenotype of YAP1-enforced expressed HT-29 or Caco-2 cells. Krüppel-like factor 5 (KLF5) protein, not KLF5 mRNA levels, were increased due to YAP1 overexpression which is reported to prevent KLF5 degradation. Co-immunoprecipitation (Co-IP) assays demonstrated that YAP1 bound with KLF5 in HT-29 and Caco-2 cells. Luciferase and chromatin immunoprecipitation (ChIP) assays indicated that both YAP1 and KLF5 bound to the first two loci with GC-boxes in Ascl2 promoter and induced Ascl2 transcription. The decreased Ascl2 transcription by YAP1 interference required an intact KLF5 binding site (GC-box) within Ascl2 promoter, KLF5 knockdown reduced YAP1 binding and Ascl2 luciferase reporter activity upon YAP1 overexpression. Positive correlation among YAP1 and Ascl2 mRNA levels was observed in colorectal cancer (CRC) samples. Thus, our study demonstrated that Ascl2, a fate decider of CRC progenitor cells can be activated by the Hippo signaling pathway in CRC progenitor cells, and ensured their self-renewability.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(Tyr[SO3H]27)Cholecystokinin fragment 26-33 Amide, ≥97% (HPLC), powder