Skip to Content
Merck
  • Therapy with Multipotent Mesenchymal Stromal Cells Protects Lungs from Radiation-Induced Injury and Reduces the Risk of Lung Metastasis.

Therapy with Multipotent Mesenchymal Stromal Cells Protects Lungs from Radiation-Induced Injury and Reduces the Risk of Lung Metastasis.

Antioxidants & redox signaling (2015-06-13)
Diana Klein, Alexandra Schmetter, Roze Imsak, Florian Wirsdörfer, Kristian Unger, Holger Jastrow, Martin Stuschke, Verena Jendrossek
ABSTRACT

Previous thorax irradiation promotes metastatic spread of tumor cells to the lung. We hypothesized that vascular damage facilitates lung metastasis after thorax irradiation and that therapeutically applied multipotent mesenchymal stromal cells (MSCs) with reported repair activity may prevent these adverse effects of ionizing radiation by protecting lung endothelia from radiation-induced damage. Previous whole-thorax irradiation (WTI) with 15 Gy significantly enhanced seeding and metastatic growth of tumor cells in the lung. WTI was further associated with endothelial cell damage, senescence of lung epithelial cells, and upregulation of invasion- and inflammation-promoting soluble factors, for example, endothelial matrix metalloproteinase 2 (Mmp2), its activator Mmp14, the cofactor tissue inhibitor of metalloproteinases 2 (Timp2), chemokine (C-C motif) ligand 2 (Ccl2), and urokinase-type plasminogen activator (Plau/uPA), and recruitment of CD11b+CD11c- myelomonocytic cells. Inhibition of Mmp2 counteracted radiation-induced vascular dysfunction without preventing increased metastasis. In contrast, therapy with bone marrow or aorta-derived MSCs within 2 weeks postirradiation antagonized radiation-induced damage to resident cells as well as the resulting secretome changes and abrogated the metastasis-promoting effects of WTI. Therapy with MSCs protects lungs from radiation-induced injury and reduces the risk of lung metastasis. MSC-mediated inhibition of Mmp2 mediates their protective effects at the vasculature. Furthermore, local and systemic effects such as inhibition of radiation-induced senescence of bronchial epithelial cells and associated secretion of immunomodulatory factors may participate in the inhibitory effect of MSCs on lung metastasis. MSC therapy is a promising strategy to prevent radiation-induced lung injury and the resulting increased risk of metastasis.

MATERIALS
Product Number
Brand
Product Description

Roche
cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail, Tablets provided in EASYpacks
Sigma-Aldrich
5-Bromo-4-chloro-3-indolyl β-D-galactopyranoside, ≥98%, powder
Sigma-Aldrich
Evans Blue, Dye content ≥75 %