Skip to Content
Merck
  • Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells.

Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells.

BMC cell biology (2016-05-01)
Ye Zhao, Xi Qiao, Lihua Wang, Tian Kui Tan, Hong Zhao, Yun Zhang, Jianlin Zhang, Padmashree Rao, Qi Cao, Yiping Wang, Ya Wang, Yuan Min Wang, Vincent W S Lee, Stephen I Alexander, David C H Harris, Guoping Zheng
ABSTRACT

Endothelial-mesenchymal transition (EndoMT) is a major source of myofibroblast formation in kidney fibrosis. Our previous study showed a profibrotic role for matrix metalloproteinase 9 (MMP-9) in kidney fibrosis via induction of epithelial-mesenchymal transition (EMT). Inhibition of MMP-9 activity reduced kidney fibrosis in murine unilateral ureteral obstruction. This study investigated whether MMP-9 also plays a role in EndoMT in human glomerular endothelial cells. TGF-β1 (10 or 20 ng/ml) induced EndoMT in HKGECs as shown by morphological changes. In addition, VE-cadherin and CD31 were significantly downregulated, whereas α-SMA, vimentin, and N-cadherin were upregulated. RT-PCR revealed that Snail, a known inducer of EMT, was upregulated. The MMP inhibitor GM6001 abrogated TGF-β1-induced EndoMT. Zymography indicated that MMP-9 was also upregulated in TGF-β1-treated HKGECs. Recombinant MMP-9 (2 μg/ml) induced EndoMT in HKGECs via Notch signaling, as evidenced by increased formation of the Notch intracellular domain (NICD) and decreased Notch 1. Inhibition of MMP-9 activity by its inhibitor showed a dose-dependent response in preventing TGF-β1-induced α-SMA and NICD in HKGECs, whereas inhibition of Notch signaling by γ-secretase inhibitor (GSI) blocked rMMP-9-induced EndoMT. Taken together, our results demonstrate that MMP-9 plays an important role in TGF-β1-induced EndoMT via upregulation of Notch signaling in HKGECs.