Skip to Content
Merck
  • Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies.

Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies.

Analytical and bioanalytical chemistry (2015-09-26)
Meritxell Navarro-Reig, Joaquim Jaumot, Alejandro García-Reiriz, Romà Tauler
ABSTRACT

The comprehensive analysis of untargeted metabolomics data acquired using LC-MS is still a major challenge. Different data analysis tools have been developed in recent years such as XCMS (various forms (X) of chromatography mass spectrometry) and multivariate curve resolution alternating least squares (MCR-ALS)-based strategies. In this work, metabolites extracted from rice tissues cultivated in an environmental test chamber were subjected to untargeted full-scan LC-MS analysis, and the obtained data sets were analyzed using XCMS and MCR-ALS. These approaches were compared in the investigation of the effects of copper and cadmium exposure on rice tissue (roots and aerial parts) samples. Both methods give, as a result of their application, the whole set of resolved elution and spectra profiles of the extracted metabolites in control and metal-treated samples, as well as the values of their corresponding chromatographic peak areas. The effects caused by the two considered metals on rice samples were assessed by further chemometric analysis and statistical evaluation of these peak area values. Results showed that there was a statistically significant interaction between the considered factors (type of metal of treatment and tissue). Also, the discrimination of the samples according to both factors was possible. A tentative identification of the most discriminant metabolites (biomarkers) was assessed. It is finally concluded that both XCMS- and MCR-ALS-based strategies provided similar results in all the considered cases despite the completely different approaches used by these two methods in the chromatographic peak resolution and detection strategies. Finally, advantages and disadvantages of using these two methods are discussed. Graphical Abstract Summary of the workflow for untargeted metabolomics using the compared approaches.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
PIPES, BioXtra, ≥99% (titration)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Copper(II) sulfate pentahydrate, 99.995% trace metals basis
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Ammonium acetate, 99.999% trace metals basis
Sigma-Aldrich
PIPES, BioXtra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Sigma-Aldrich
Copper(II) sulfate pentahydrate, 99.999% trace metals basis
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
PIPES, ≥99% (titration)
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Ammonium acetate, BioXtra, ≥98%
Sigma-Aldrich
Ammonium acetate, for molecular biology, ≥98%
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
PIPES, BioPerformance Certified, suitable for cell culture
Sigma-Aldrich
Copper(II) sulfate pentahydrate, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Copper(II) sulfate pentahydrate, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Ammonium acetate, ≥99.99% trace metals basis
Sigma-Aldrich
Suplatast tosylate, ≥98% (HPLC)
Sigma-Aldrich
Ammonium acetate, ACS reagent, ≥97%
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
PIPES, anhydrous, free-flowing, Redi-Dri, ≥99%
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%