Skip to Content
Merck
  • Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

Chemphyschem : a European journal of chemical physics and physical chemistry (2014-11-25)
Malcolm E Tessensohn, Melvyn Lee, Hajime Hirao, Richard D Webster
ABSTRACT

Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol.

MATERIALS
Product Number
Brand
Product Description

Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Supelco
Dichloromethane, analytical standard
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Supelco
Ethanol, standard for GC
Sigma-Aldrich
tert-Butanol, anhydrous, ≥99.5%
Sigma-Aldrich
1,4-Butanediol, ReagentPlus®, 99%
Sigma-Aldrich
Ethanol, for residue analysis
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
1,3-Propanediol, 98%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Isobutyl alcohol, ≥99%, FCC, FG
Sigma-Aldrich
Isobutyl alcohol, natural, ≥99%, FCC, FG
Supelco
tert-Butanol, analytical standard
Sigma-Aldrich
Tri(2-furyl)phosphine, 99%
Sigma-Aldrich
2-Fluoroethanol, 95%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
Butyl alcohol, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
1,4-Butanediol, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required