- The function of the Periaxin gene during nerve repair in a model of CMT4F.
The function of the Periaxin gene during nerve repair in a model of CMT4F.
Mutations in the Periaxin (PRX) gene are known to cause autosomal recessive demyelinating Charcot-Marie-Tooth (CMT4F) and Dejerine-Sottas disease. The pathogenesis of these diseases is not fully understood. However, progress is being made by studying both the periaxin-null mouse, a mouse model of the disease, and the protein-protein interactions of periaxin. L-periaxin is a constituent of the dystroglycan-dystrophin-related protein-2 complex linking the Schwann cell cytoskeleton to the extracellular matrix. Although periaxin-null mice myelinate normally, they develop a demyelinating peripheral neuropathy later in life. This suggests that periaxin is required for the stable maintenance of a normal myelin sheath. We carried out sciatic nerve crushes in 6-week-old periaxin-null mice, and, 6 weeks later, found that although the number of myelinated axons had returned to normal, the axon diameters remained smaller than in the contralateral uncrushed nerve. Not only do periaxin-null mice have more hyper-myelinated axons than their wild-type counterparts but they also recapitulate this hypermyelination during regeneration. Therefore, periaxin-null mice can undergo peripheral nerve remyelination, but the regulation of peripheral myelin thickness is disrupted.