Skip to Content
Merck
  • Direct ortho-arylation of ortho-substituted benzoic acids: overriding Pd-catalyzed protodecarboxylation.

Direct ortho-arylation of ortho-substituted benzoic acids: overriding Pd-catalyzed protodecarboxylation.

Organic letters (2013-02-05)
Carlos Arroniz, Alan Ironmonger, Gerry Rassias, Igor Larrosa
ABSTRACT

ortho-Arylation of ortho-substituted benzoic acids is a challenging process due to the tendency of the reaction products toward Pd-catalyzed protodecarboxylation. A simple method for preventing decarboxylation in sterically hindered benzoic acids is reported. The method described represents a reliable and broadly applicable entry to 2-aryl-6-substituted benzoic acids.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium carbonate, BioUltra, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Potassium carbonate, 99.995% trace metals basis
Sigma-Aldrich
Potassium carbonate, anhydrous, free-flowing, −325 mesh, Redi-Dri, reagent grade, ≥98%
Sigma-Aldrich
Potassium carbonate, puriss., meets analytical specification of Ph. Helv., anhydrous, granulated, 99-101% (calc. to the dried substance)
Sigma-Aldrich
Potassium carbonate, puriss. p.a., ACS reagent, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Potassium carbonate, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium carbonate, ACS reagent, ≥99.0%
Sigma-Aldrich
Potassium carbonate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, 99%
Sigma-Aldrich
Potassium carbonate, ReagentPlus®, 99%
Sigma-Aldrich
Potassium carbonate, reagent grade, ≥98%, powder, −325 mesh
Sigma-Aldrich
Potassium carbonate, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Potassium carbonate, meets USP testing specifications