Skip to Content
Merck
  • Development of polylactide and polyethylene vinyl acetate blends for the manufacture of vaginal rings.

Development of polylactide and polyethylene vinyl acetate blends for the manufacture of vaginal rings.

Journal of biomedical materials research. Part B, Applied biomaterials (2012-03-23)
Christopher Mc Conville, Ian Major, David R Friend, Meredith R Clark, A David Woolfson, R Karl Malcolm
ABSTRACT

Vaginal rings are currently being investigated for delivery of HIV microbicides. However, vaginal rings are currently manufactured form hydrophobic polymers such as silicone elastomer and polyethylene vinyl acetate (PEVA), which do not permit release of hydrophilic microbicides such as the nucleotide reverse transcriptase inhibitor tenofovir. Biodegradable polymers such as polylactide (PLA) may help increase release rates by controlling polymer degradation rather than diffusion of the drug through the polymer. However, biodegradable polymers have limited flexibility making them unsuitable for use in the manufacture of vaginal rings. This study demonstrates that by blending PLA and PEVA together it is possible to achieve a blend that has flexibility similar to native PEVA but also allows for the release of tenofovir.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene-co-vinyl acetate), vinyl acetate 18 wt. %, melt index 8 g/10 min (190°C/2.16kg), contains 200-900 ppm BHT as inhibitor
Sigma-Aldrich
Poly(ethylene-co-vinyl acetate), vinyl acetate 12 wt. %, melt index 8 g/10 min (190°C/2.16kg)
Sigma-Aldrich
Poly(ethylene-co-vinyl acetate), vinyl acetate 25 wt. %, melt index 19 g/10 min (190°C/2.16 kg), contains 200-900 ppm BHT as inhibitor
Sigma-Aldrich
Poly(ethylene-co-vinyl acetate), vinyl acetate 40 wt. %, melt index (41-63 dg/min (190°C/2.16kg)), contains 190-910 ppm inhibitor