- Characterization of polyanion-protein complexes by frontal analysis continuous capillary electrophoresis and small angle neutron scattering: effect of polyanion flexibility.
Characterization of polyanion-protein complexes by frontal analysis continuous capillary electrophoresis and small angle neutron scattering: effect of polyanion flexibility.
The binding constant (K(obs)) for the beta-lactoglobulin-poly(vinylsulfate) (BLG-PVS) complex was measured by frontal analysis continuous capillary electrophoresis at pH values above the isoelectric point of BLG, and the persistence length (L(p)) of PVS was measured by small angle neutron scattering, to examine the effect of polyelectrolyte chain stiffness on its binding efficiency to proteins. The values of K(obs) and L(p) were compared with those of BLG-PSS and BLG-PAMPS (poly(2-acrylamido-2-methylpropanesulfonate)) reported previously. The relationship between K(obs) and L(p) was reciprocal, indicating that protein binding is enhanced by the flexibility of the polyanion, at least in the case where the net protein charge is negative. In addition, at a fixed pH, the polymer systems displayed a similar ionic strength dependence of K(obs). This similarity was consistent with the proposal that the binding properties of PVS and PAMPS polyanions are governed purely by electrostatic interactions and are independent of their molecular structure.