Skip to Content
Merck
  • The invasion process of bovine erythrocyte by Babesia divergens: knowledge from an in vitro assay.

The invasion process of bovine erythrocyte by Babesia divergens: knowledge from an in vitro assay.

Veterinary research (2011-05-17)
Yi Sun, Emmanuelle Moreau, Alain Chauvin, Laurence Malandrin
ABSTRACT

Babesia divergens is a tick-transmitted apicomplexan parasite for which asexual multiplication in its vertebrate hosts is restricted to erythrocytes. Current knowledge of invasion of these target cells is limited. An efficient in vitro invasion assay was set up to gain access to this information. Parasites prepared from infected RBC, lysed by electroporation, and mixed with bovine RBC in a selected synthetic medium (RPMI 1640 supplemented with calcium) were able to establish subsequent cultures with parasitemia ranging from 6 to 14%. Free parasites remaining in the invasion medium could be eliminated by Percoll gradient and culture could be pursued with the freshly invaded erythrocytes. In this way, the invasion time window could be shortened to obtain a synchronised start of the culture or to study the kinetics of invasion. With this assay we demonstrate that 1) erythrocyte invasion by B. divergens is a rapid process since 70% of the invasion-competent parasites invaded the RBC in less than 45 s; 2) all invasion-competent parasites achieved invasion within 10 min of contact; 3) one erythrocyte could be invaded concomitantly by two merozoites; 4) despite a synchronous start, the parasite population evolved heterogeneously resulting in a progressive loss of synchronisation. Western blot analysis of proteins collected from invasion medium were performed with sera from animals experimentally infected with B. divergens and highlighted several proteins. The dose-dependent, inhibitory effects of these sera on B. divergens invasion suggest that these proteins might be involved in the invasion process. Further investigations are required for their characterisation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
BCIP®/NBT Liquid Substrate System, ready to use solution