Skip to Content
Merck

LIN28 expression and function in medulloblastoma.

Journal of cellular physiology (2023-01-18)
Ahmed Maklad, Mohammed Sedeeq, Richard Wilson, John A Heath, Nuri Gueven, Iman Azimi
ABSTRACT

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Current treatment modalities are not completely effective and can lead to severe neurological and cognitive adverse effects. In addition to urgently needing better treatment approaches, new diagnostic and prognostic biomarkers are required to improve the therapy outcomes of MB patients. The RNA-binding proteins, LIN28A and LIN28B, are known to regulate invasive phenotypes in many different cancer types. However, the expression and function of these proteins in MB had not been studied to date. This study identified the expression of LIN28A and LIN28B in MB patient samples and cell lines and assessed the effect of LIN28 inhibition on MB cell growth, metabolism and stemness. LIN28B expression was significantly upregulated in MB tissues compared to normal brain tissues. This upregulation, which was not observed in other brain tumors, was specific for the aggressive MB subgroups and correlated with patient survival and metastasis rates. Functionally, pharmacological inhibition of LIN28 activity concentration-dependently reduced LIN28B expression, as well as the growth of D283 MB cells. While LIN28 inhibition did not affect the levels of intracellular ATP, it reduced the expression of the stemness marker CD133 in D283 cells and the sphere formation of CHLA-01R cells. LIN28B, which is highly expressed in the human cerebellum during the first few months after birth, subsequently decreased with age. The results of this study highlight the potential of LIN28B as a diagnostic and prognostic marker for MB and open the possibility to utilize LIN28 as a pharmacological target to suppress MB cell growth and stemness.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Goat serum
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid