MilliporeSigma
  • Home
  • Search Results
  • Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering.

Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering.

Journal of biotechnology (2015-07-06)
S V B Janardhan Garikipati, Tonya L Peeples
ABSTRACT

The solvent resistance capacity of Pseudomonas putida S12 was applied by using the organism as a host for biocatalysis and through cloning and expressing solvent resistant pump genes into Escherichia coli. P. putida S12 expressing toluene ortho mononooxygenase (TOM-Green) was used for 1-naphthol production in a water-organic solvent biphasic system. Application of P. putida S12 improved 1-naphthol production per gram cell dry weight by approximately 42% compared to E. coli. Moreover, P. putida S12 enabled the use of a less expensive solvent, decanol, for 1-naphthol production. The solvent resistant pump (srpABC) genes of P. putida S12 were cloned into a solvent sensitive E. coli strain to transfer solvent tolerance. Recombinant strains bearing srpABC genes in either a low-copy number or a high-copy number plasmid grew in the presence of saturated concentration of toluene. Both of the recombinant strains were more tolerant to 1% v/v of toxic solvents, decanol and hexane, reaching similar cell density as the no-solvent control. Reverse-transcriptase analysis revealed that the srpABC genes were transcribed in engineered strains. The results demonstrate successful transfer of the proton-dependent solvent resistance mechanism and suggest that the engineered strain could serve as more robust biocatalysts in media with organic solvents.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Naphthalene, suitable for scintillation, ≥99%
Sigma-Aldrich
Naphthalene, 99%
Sigma-Aldrich
1-Naphthol, ReagentPlus®, ≥99%
Sigma-Aldrich
1-Naphthol, BioXtra, ≥99%
Sigma-Aldrich
1-Naphthol, puriss. p.a., reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Dodecane, anhydrous, ≥99%
Supelco
Toluene, HPLC grade, 99.8%
Sigma-Aldrich
1-Decanol, 98%
Sigma-Aldrich
1-Decanol, ≥98%
Sigma-Aldrich
1-Decanol, ≥98%, FCC, FG
Sigma-Aldrich
Toluene, suitable for HPLC, ≥99.9%