MilliporeSigma
  • Home
  • Search Results
  • Solution structure of the transmembrane 2 domain of the human melanocortin-4 receptor in sodium dodecyl sulfate (SDS) micelles and the functional implication of the D90N mutant.

Solution structure of the transmembrane 2 domain of the human melanocortin-4 receptor in sodium dodecyl sulfate (SDS) micelles and the functional implication of the D90N mutant.

Biochimica et biophysica acta (2015-03-11)
Ji-Hye Yun, Minsup Kim, Kuglae Kim, Dongju Lee, Youngjin Jung, Daeseok Oh, Yoon-Joo Ko, Art E Cho, Hyun-Soo Cho, Weontae Lee
ABSTRACT

The melanocortin receptors (MCRs) are members of the G protein-coupled receptor (GPCR) 1 superfamily with seven transmembrane (TM) domains. Among them, the melanocortin-4 receptor (MC4R) subtype has been highlighted recently by genetic studies in obese humans. In particular, in a patient with severe early-onset obesity, a novel heterozygous mutation in the MC4R gene was found in an exchange of Asp to Asn in the 90th amino acid residue located in the TM 2 domain (MC4RD90N). Mutations in the MC4R gene are the most frequent monogenic causes of severe obesity and are described as heterozygous with loss of function. We determine solution structures of the TM 2 domain of MC4R (MC4RTM2) and compared secondary structure of Asp90 mutant (MC4RTM2-D90N) in a micelle environment by nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that MC4RTM2 forms a long α-helix with a kink at Gly98. Interestingly, the structure of MC4RTM2-D90N is similar to that of MC4RTM2 based on data from CD and NMR spectrum. However, the thermal stability and homogeneity of MC4RD90N is quite different from those of MC4R. The structure from molecular modeling suggests that Asp90(2.50) plays a key role in allosteric sodium ion binding. Our data suggest that the sodium ion interaction of Asp90(2.50) in the allosteric pocket of MC4R is essential to its function, explaining the loss of function of the MC4RD90N mutant.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%, Redi-Dri, free-flowing
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration), free-flowing, Redi-Dri
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration)
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Cholesteryl hemisuccinate tris salt, anionic detergent
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
n-Dodecyl β-D-maltoside, BioXtra, ≥98% (GC)
Sigma-Aldrich
n-Dodecyl β-D-maltoside, ≥98% (GC)
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Imidazole, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Cholesteryl hemisuccinate