• Home
  • Search Results
  • Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.

Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.

Biotechnology and bioengineering (2015-04-22)
Le Yu, Mengmeng Xu, I-Ching Tang, Shang-Tian Yang
ABSTRACT

The glucose-mediated carbon catabolite repression (CCR) in Clostridium tyrobutyricum impedes efficient utilization of xylose present in lignocellulosic biomass hydrolysates. In order to relieve the CCR and enhance xylose utilization, three genes (xylT, xylA, and xylB) encoding a xylose proton-symporter, a xylose isomerase and a xylulokinase, respectively, from Clostridium acetobutylicum ATCC 824 were co-overexpressed with aldehyde/alcohol dehydrogenase (adhE2) in C. tyrobutyricum (Δack). Compared to the strain Ct(Δack)-pM2 expressing only adhE2, the mutant Ct(Δack)-pTBA had a higher xylose uptake rate and was able to simultaneously consume glucose and xylose at comparable rates for butanol production. Ct(Δack)-pTBA produced more butanol (12.0 vs. 3.2 g/L) with a higher butanol yield (0.12 vs. 0.07 g/g) and productivity (0.17 vs. 0.07 g/L · h) from both glucose and xylose, while Ct(Δack)-pM2 consumed little xylose in the fermentation. The results confirmed that the CCR in C. tyrobutyricum could be overcome through overexpressing xylT, xylA, and xylB. The mutant was also able to co-utilize glucose and xylose present in soybean hull hydrolysate (SHH) for butanol production, achieving a high butanol titer of 15.7 g/L, butanol yield of 0.24 g/g, and productivity of 0.29 g/L · h. This study demonstrated the potential application of Ct(Δack)-pTBA for industrial biobutanol production from lignocellulosic biomass.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Dextrose, meets EP, BP, JP, USP testing specifications, anhydrous
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
D-(+)-Xylose, ≥99%
Sigma-Aldrich
D-(+)-Xylose, ≥99%
Sigma-Aldrich
D-(+)-Xylose, BioXtra, ≥99%
Sigma-Aldrich
D-(+)-Xylose, BioUltra, ≥99.0% (sum of enantiomers, HPLC)