• Home
  • Search Results
  • Production and secretion of naphthoquinones is mediated by the MFS transporter MFS1 in the entomopathogenic fungus Ophiocordyceps sp. BCC1869.

Production and secretion of naphthoquinones is mediated by the MFS transporter MFS1 in the entomopathogenic fungus Ophiocordyceps sp. BCC1869.

World journal of microbiology & biotechnology (2015-07-22)
Pratoomporn Khaokhajorn, Sompid Samipak, Sutichai Nithithanasilp, Morakot Tanticharoen, Alongkorn Amnuaykanjanasin
ABSTRACT

Naphthoquinones are deep red polyketide pigments produced by the ant-pathogenic fungus Ophiocordyceps sp. BCC1869. In culture, biosynthesis of these naphthoquinones remains at a low level during the first 20 days and reaches its maximum production level at approximately 50 days. The MFS transporter gene MFS1 was previously identified in Ophiocordyceps sp. BCC1869 from a subtractive EST library between the fungus grown under naphthoquinone-inductive and naphthoquinone-repressive conditions. We cloned and sequenced this transporter gene, which has an open reading frame of 1505 bp and three introns (48, 52, and 58 bp). Phylogenetic analysis showed this MFS transporter was tightly clustered with fungal riboflavin transporters. Functional analysis of this gene was performed by overexpression of MFS1 under the control of a strong, constitutive promoter. We successfully transformed the fungus with this overexpression plasmid using PEG-protoplast transformation, which generated nine transformants per µg of plasmid. RT-PCR indicated that the MFS1 expression level in the overexpressing strains increased 3- to 10-fold compared to the wild type. HPLC analysis of crude extracts of mutants and wild type demonstrated that four naphthoquinone derivatives, erythrostominone, epierythrostominol, deoxyerythrostominone, and deoxyerythrostominol, were the major naphthoquinones produced and excreted in staggering quantities (20- to 2300-fold) in 7-day old liquid cultures by the mutant C7, compared to the wild type. High resolution electrospray ionization mass spectrometry verified mass spectra of these purified metabolites. Three other naphthoquinone derivatives, whose structures have not been identified, were also detected in high amount in the mutant liquid cultures.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Fluorescein, for fluorescence, free acid
Sigma-Aldrich
Dextrose, meets EP, BP, JP, USP testing specifications, anhydrous
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
3-(Benzyldimethylammonio)propanesulfonate, BioXtra, ≥99.0% (HPCE)